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cal, can be drawn in the three-dimensional case 
[using, for example, the formalism developed by 
Navaza & Silva (1979)]. 

These conclusions do not mean that (re)ME is 
equivalent to the traditional inverse Fourier recon- 
struction ~" (when phases are available), because ~- is 
not x, even if they have the same number of terms 
corresponding to the same reciprocal vectors. It just 
clarifies the sense of super-resolution and puts limits 
to the confidence we can give to phases and Fourier 
coefficients estimated by any local MEM procedure 
that only uses experimental data as constraints. 
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Abstract 

The basic Aw, a20 technique for examining single- 
crystal Bragg reflections [Mathieson (1982). Acta 
COest. A38, 378-387] has recently been improved 
[Mathieson & Stevenson (1984). Aust. J. Phys. 37; 
657-665], by using a simple experimental mod- 
ification which reduces the source component to a 
minor (angular) role, thereby making the extraction 
(deconvolution) of the remaining components more 
accurate. The application of this new technique in 
the determination of reflectivity (rocking) curves for 
imperfect crystals has been demonstrated [Mathieson 
& Stevenson (1985). Acta Cryst. A41, 290-296]. In 
the present case, the examination of individual reflec- 
tions from a small single crystal of CuInSe2 reveals 
that the improved technique is capable (i) of identify- 
ing, by its locus extension in ato, A20 space, diffrac- 
tion from one side of the specimen crystal to the other 
(in the diffraction plane), even for a crystal of average 
dimension -0 .06ram,  and (ii) of estimating the 
reflectivity curve for different parts of the crystal. A 
series of model eases is discussed, to clarify the inter- 
pretation of observed two-dimensional intensity dis- 
tributions. While considered here in relation to a small 
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crystal, this technique is applicable to extended-plate 
crystals (in transmission mode) by a selected-area 
procedure. 

1. Introduction 

In a recent series of papers, Mathieson (1982) be ing  
the first, Mathieson has demonstrated the advantages 
of the two-dimensional ato, A20 method for examin- 
ing single-crystal Bragg reflections, relative to the 
conventional Ato profile method. The one- 
dimensional intensity profile obtained in the conven- 
tional procedure represents the convolution of a num- 
ber of components such as the mosaic spread,/x, the 
source size, o-, the wavelength distribution, A, the 
specimen crystal size (Mathieson, 1984a), c, and, 
most importantly, the wide aperture in front of the 
detector, A. The aw, a20 technique, involving the 
introduction of a narrow aperture in front of the 
detector and the consequent extension to a second 
measurement parameter, results, in effect, in a form 
of partial deconvolution, with the individual major 
components being readily identified by their charac- 
teristic loci in Ato, a20 space. 
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224 THE Aw, A20 INTENSITY DISTRIBUTION AND CRYSTAL SUBSTRUCTURE 

The principal component distributions in Aw, A 20 
space are, generally, /z, o- and A. Mathieson & 
Stevenson (1984) have demonstrated, by way of a 
simple experimental modification, that the o- com- 
ponent can be reduced to a minor (angular) role. The 
remaining principal components , /z  and A, can then 
be determined with considerable accuracy. The speci- 
men-specific distribution /z is the component of 
greatest physical significance because of its iden- 
tification with the reflectivity distribution, r, of the 
individual Bragg refection in question, and hence 
with the variation of extinction within that refection 
(Mathieson, 1984b). 

Mathieson & Stevenson (1985) have applied the 
improved AoJ, A20 technique in the determination of 
a particular reflectivity curve for an imperfect single 
crystal of tetragonal CulnS%, of average dimension 
- 0 . 0 6  mm. In that study_, the two-dimensional array 
of data points for the 112 refection, collected as an 
co scan using unfiltered Mo Ka radiation, was trans- 
formed in such a way that the /~ / r  and A components, 
the only major components present, were at right 
angles. [The use of affine transformations parallel to 
either the A20 axis (notation: s = n) or the Aw axis 
(notation: t =  n) has been discussed in detail by 
Mathieson & Stevenson (1985).] Then, under the 
assumptions that the mosaic distribution of the speci- 
men crystal was homogeneous and the distribution 
centres were parallel along the crystal (in the diffrac- 
tion plane), the data points were summed parallel to 
A, to yield r(Aw), or more precisely r*(Aw), the 
extinguished reflectivity distribution (see Mathieson, 
1984b). In the case of the refection considered, 112, 
the assumptions made in regard to the mosaic distri- 
bution appear to be quite justifiable [see, for example, 
Fig. 2(b) of Mathieson & Stevenson (1984) or Fig. 3 
of Mathieson & Stevenson (1985)]. In order to 
demonstrate this point further, Fig. l (a )  shows a 
series of slice scans (Mathieson, 1982) taken along 
the A component, each parallel to the /z*/r* com- 
ponent. The data for each curve have been put on a 
common scale and plotted with a displacement along 
the vertical axis, for ease of comparison. The shapes 
of the curves are remarkably similar and the system- 
atic movement of the peak position in Aw is very 
slight. 

In cases where the CulnSe2 crystal being con- 
sidered here is in other orientations relative to the 
incident X-ray beam, be it a reflection other than the 
112 or a different azimuthal position about the 112 
scattering vector, the mosaic distribution in the 
diffraction plane may not be homogeneous and/or  
the distribution centres may not be parallel along the 
crystal. The (extinguished) refectivity distribution 
would not then be invariant along the A axis of the 
corresponding intensity distribution, I(Aoj, A20), 
and the result of summing data points parallel to A 
would be an 'averaged' r* distribution. An example 

of such a case is given in Fig. l(b),  for the 112 
reflection at an azimuthal angle, ¢, of 100 °. Fig. l (b)  
was derived in an analogous manner to Fig. l (a) .  In 
this case, g*  is not homogeneous and the distribution 
centres are not parallel. Interpretation of Fig. l (b)  
will be expounded later in the paper. 

2. Relationship of the Aw, A20 distribution to crystal 
substructure (mosaic distribution) and shape 

The experimental investigations that have provided 
insight into the relationship of I(Aw, ~20)  to crystal 
substructure and shape were carried out on the {112} 
refections of the CulnSe2 crystal used by Mathieson 
& Stevenson (1984, 1985), by applying the improved 
kw, A20 technique with unfiltered Mo Ka radiation. 
This small imperfect single crystal has an irregular 
shape with an average dimension ---0.06 mm. CulnSe2 
is tetragonal and has the chalcopyrite structure 
(Parkes, Tomlinson & Hampshire, 1973). The {112) 
reflections were chosen for study because they are 
intense and low angle (0---6.1°). 
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Fig. 1. Series of slice scans taken along the A component, each 
parallel to the~/r component for (a) the 112 reflection at t/s = 0 ° 
and (b)the 112 reflection at O= 100 °. For ease of comparison, 
each curve has been displaced along the vertical axis, the data 
for each curve having already been put on a common scale (by 
making peak intensities agreO. 
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Initially, this investigation involved recording the 
I(Ato, A20) distributions for the 112 reflection in the 
- 2 0  region and its Friedel-pair reflection, 132, in the 
+20 region, i.e. retaining essentially the same orienta- 
tion of the specimen crystal to the incident X-ray 
beam and simply traversing from - 2 0  to +20 and 
-to to +to. These distributions are shown in Fig. 2, 
in the correct mutual disposition relative to the origin 
of the Ewald circle, O. The similarity in detail of the 
two distributions is such as to leave little doubt that 
they are due to the diffracting characteristics of the 
specimen crystal as it is presented to the incident 
beam. This is confirmed by other such pairs of 
I(Ato, A20) distributions, some of which are par- 
ticularly distinctive, a consequence of the local mosaic 
distributions (as discussed later). 

The next step in this investigation involved com- 
parison of the I(Ato, A20) distributions of the 112 
reflection in the +20 region for ~, = 100 and ¢ = 280 °. 
The two results are shown in Figs. 3(a) (i) and (ii) 
respectively. While obviously related by a sort of 
'mirroring' across the A20 axis, the precise relation- 
ship is somewhat obscured because the direction of 
the h locus is such that it 'distorts' the two distribu- 
tions differently, remembering that I(Ato, A20) rep- 
resents the convolution of /z, h and the residual 
resolution function R(Ato, A20) (Mathieson & 
Stevenson, 1984, 1985). When one applies an affine 
transformation of the type t =½ (see Mathieson & 
Stevenson, 1985), the results for the two I(Ato, A20) 
distributions are as shown in Figs. 3(b) (i) and (ii) 
respectively. Presented in this way, the 'mirror' 
relationship associated with the 180 ° rotation around 
the pole (scattering vector) is evident. 

With these data, it is possible to deduce the sig- 
nificance of the intensity distribution detail in terms 
of certain physical features, i.e. the local mosaic 
spread of the specimen crystal. To arrive at an expla- 
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Fig. 2. The I(ato, A20) distributions (s = 0) for the 112 reflection 
in the -20 region and its Friedel-pair reflection, 112, in the +20 
region, in the correct mutual disposition relative to the origin 
of the Ewald circle, O. The contour levels are 3000, 2500, 2000, 
1500, 1000, 500, 200 and 100 counts s -t. 

nation in this particular case, it is useful to develop 
the relationship between the I(Ato, A20) distribution 
and the crystal shape and mosaic spread, starting 
from that of a small single crystal with zero mosaic 
spread. In this way, we can establish the relationship 
for a range of cases and develop an interpretation for 
intensity distributions arising from specimen crystals 
with other, different, characteristics. 

We shall consider the situation for a low-angle 
reflection, where the locus associated with the crystal 
size, c, is close to the A locus (see Mathieson, 1984a). 
[In the present case, for the {112} reflections and 
allowing for unequal source-to-crystal (S) and crys- 
tal-to-detector (D) distances, the loci for c and A will 
be separated by ---2 °, for the to-scan mode (s = 0).] 
For this modelling exercise, we assume the A distribu- 
tion to be sharply monochromatic. Only the to-scan 
mode (s = 0) will be treated here, readers can readily 
deduce the results for other scan modes and for other 
regions of 0 by consulting Mathieson & Stevenson 
(1985) and Mathieson (1984a), respectively. 

The basic features of the experiment are shown in 
Fig. 4(a). The ends of the crystal are a and b, c 
identifying its centre. The diffraction from these 
different parts of the crystal are therefore identified 
by a, b and c, so that the size of the range along A20, 
i.e. ACB, provides an estimate of the size of the crystal. 
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Fig. 3. (a) The I(AoJ, A20) distributions (s = 0) for the 1i2 reflec- 

tion in the +20 region for 0) 0 = 100 ° and (ii) @ =280 °. The 
contour levels are 5000, 4000, 3000, 2000, 1500, 1000, 500, 200 
and 100 counts s -t for (i) and the same as in Fig. 2 for (ii). (b) 
The I(Am, A20) distributions for the data presented in (a) after 
a t= 1/2 affine transformation has been carried out, (i) for 
~/, = 100 ° and (ii) for @ = 280 °. 
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The dimension of the source, S, in the diffraction 
plane, h [see Fig. 4(b)], is much smaller than for the 
conventional X-ray tube orientation (Mathieson & 
Stevenson, 1984). It should be noted that, as the 
mosaic fan, at ' a '  (say), passes over the source, S, 
diffraction from a only occurs along the path SaA,  
i.e. the position a is identified as associated with the 
position A in the A20 dimension. It should also be 
noted that the points A, B and C do not rotate about 
c as the crystal rotates, but are fixed in A20. Fig. 4(b) 
presents a magnified version of the path SaA ,  indicat- 
ing the angular dimension of the zato component of 
the resolution function, R(zato, A20). For compara- 
tive purposes, the sizes of the mosaic spread and the 
source illumination are indicated in Figs. 4(a) and 
(b) respectively. 

Fig. 5(a) depicts the mosaic spread at the three 
points a, c and b (refer to Fig. 4) for a variety of 
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Fig. 4. (a) The basic experimental set-up, consisting of the source 
S, the specimen crystal (ends denoted by a and b, and centre 
by c) and the detector (not drawn) to intercept the diffracted 
radiation. Mosaic fans are depicted at positions a, c and b along 
the crystal. (b) A magnified version of the path SaA.  These 
diagrams are not, of course, to scale. 

cases. The size of the mosaic spread is indicated 
diagrammatically by the size of the fan at a given 
point, and the relative orientations of the fans by their 
centre (peak) lines. Fig. 5(b) shows, in each case, the 
corresponding I (Ato, za 20) distribution, pp indicating 
the peak of the distribution. In this manner we can 
demonstrate the effects of inhomogeneity and asym- 
metry in the mosaic spread, as well as the effects of 
the distribution (fan) centres not being parallel, along 
the crystal. We now discuss the individual cases depic- 
ted in Fig. 5. 

For a crystal with zero mosaic spread and parallel 
peak lines, Fig. 5(a)(i), the corresponding 
I(zato, za20) distribution is shown in Fig. 5(b)(i), the 
locus being at a slope of "--tan -] ½ to the za20 axis 
(see earlier in this section). Next, we consider the 
ease of a crystal of the same size but with a 
homogeneous mosaic spread of significant magni- 
tude, the mosaic spread being either symmetrical (full 
lines) or asymmetrical (dashed lines) along the crystal 
and with the centre lines of the fans being parallel, 
Fig. 5(a)(ii). The corresponding I(zato, A20) distribu- 
tions are shown in Fig. 5(b)(ii). If the centres are 
parallel but the mosaic spread is not homogeneous 
along the crystal, for example Figs. 5(a)(iii) and (iv), 
then the corresponding I(Ato, za20) distributions are 
as shown in Figs. 5(b)(iii) and (iv). When the mosaic 
distribution centres are non-parallel but point to one 
centre and the mosaic spread is homogeneous (full 
lines) or changing linearly from a to b (dashed lines), 
Fig. 5(a)(v), the corresponding I(Ato, za20) distribu- 
tions are as shown in Fig. 5(b)(v). Figs. 5(a)(vi) and 
(b)(vi) correspond to the case of a 180 ° rotation in 
0 relative to the case depicted in Figs. 5(a)(v) and 
(b)(v). It should be noted that the slope of the line 
pp depends upon the radius of curvature for the 
mosaic distribution centres. When the centres are 

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) 
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Fig. 5. (a) The mosaic spread at points a, c and b along the crystal for a variety of cases [(i)-(x)]. (b) The corresponding l(zato, za20) 
distributions (s = 0), pp indicating the peak of the distribution. It should be noted that the extents of these distributions along Ato 
and z)20 are not to scale. For instance, the height (Ato), associated with mosaic spread, is typically -0 .05-0 .15  ° [as indicated in Fig. 
4(a)] in the present case, whereas the width (A20), associated with crystal size, is typically ~0.03 °. It should also be noted that while 
the crystal has been pictured as being curved (bent) in (a)(v)-(x),  the associated mosaic spreads along the crystal (and in particular 
their relative orientations) might just as easily accompany a macroscopically 'straight' crystal. 
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non-parallel and the effective curvature increases (or 
the effective radius of curvature decreases) from a to 
b (full lines for symmetrical mosaic spread and 
dashed for asymmetrical mosaic spread), Fig. 5(a) 
(vii), the corresponding I(Ato, A20) distributions are 
as shown in Fig. 5(b)(vii). Figs. 5(a)(viii) and (b) 
(viii) correspond to the case of a 180 ° rotation in ~b 
relative to the case depicted in Figs. 5(a)(vii) and 
(b)(vii). The line pp is now curved. Finally, Figs. 
5(a)(ix) and (x) are analogous to Figs. 5(a)(vii) and 
(viii) respectively, but the effective curvature 
decreases, rather than increases, from a to b. The 
corresponding I(Ato, A20) distributions are shown in 
Figs. 5(b)(ix) and (x). 

The above discussion is for a reflection involving 
a crystal of uniform cross section. If the cross section 
varies, this will affect the magnitude of the diffracted 
intensity from specific points in the specimen crystal, 
with appropriate effects for the local absorption and 
extinction. 

The experimental results for the 112 reflection of 
CulnSe2, Figs. 3(a)(i) and (ii), accord, in terms of 
the general distribution, with Figs. 5 (b) (viii) and (vii) 
respectively. Thus we see that the effect, on the 
I(Ato,/120) distribution, of rotating the specimen 
crystal by 180 ° in @ is in accord with the model used. 
While the effects of non-parallel mosaic distribution 
centres and asymmetry of the local mosaic spreads 
along the crystal are quite apparent in Figs. 3(a)(i) 
and (ii), the effect of inhomogeneity in the mosaic 
spread along the crystal may not be so obvious and, 
indeed, Figs. 5(a)(vii) and (viii) depict a homo- 
geneous mosaic spread. In Fig. l(b), presented in 
§ 1, which utilized the data in Fig. 3(a)(i) [or more 
precisely Fig. 3(b)(i)], the effects of non-parallel 
centres and asymmetric mosaic spreads along the 
crystal are obvious. It is also apparent that the mosaic 
spread along the crystal is inhomogeneous, with the 
distribution at the a end of the crystal much narrower 
than that at the b end. Indeed, the slice scan at 
/120 = -0.01 ° is very similar to those slice scans pre- 
sented in Fig. l(a) .  The other slice scans (A20 = 0.00, 
0.01 and 0.02 °) may be revealing some evidence of 
fragmentation (cf. Mathieson, 1982). 

The 'mirror' relationship observed earlier, between 
Figs. 3(b)(i) and (ii), and associated with the 180 ° 
rotation in $, can now be readily understood from 
Fig. 5. It must be remembered that the I(Ato, A20) 
distributions in Fig. 5(b) are for the s = 0 (to) scan 
mode, and so we need to visualize the effect of a t = ½ 
afline transformation, e.g. the lines pp in Figs. 5(b)(i)- 
(iv) would be very nearly horizontal, rather than at 
---tan -1½ to the A20 axis. Comparison of Figs. 5(b)(v) 
with (vi), (vii) with (viii) and (ix) with (x), after such 
a transformation has been made, clearly reveals this 
'mirror' relationship. 

Fig. 6 shows the I(Ato,/120) distribution obtained 
in the -20  region for the 112 reflection in a particular 

asymmetric position (~ ~ 0 or 180 °, to ~ 0). The speci- 
men crystal was initially in the orientation to obtain 
Fig. 3(a)(i), then +20 was changed to -20  and +to 
to + to-20 .  This procedure was used, for a different 
reflection (in a symmetric position), in Fig. 2, and 
the comparison of Figs. 3(a)(i) and 6 confirms the 
earlier conclusions, i.e. the similarity in detail of the 
two I(Ato, A20) distributions is due to the diffracting 
characteristics of the specimen crystal as presented 
to the incident beam. It is easily shown that such 
findings are consistent with the presentation in Figs. 
4 and 5. 

Another way in which we can check on our under- 
standing of the local mosaic distributions involved 
for the chosen orientation(s) of the specimen crystal 
is to carry out (in the +20 region) a 180 ° rotation in 
the diffractometer angle X and, if the crystal is not 
oriented in a symmetric position, change to to 20 - to. 
This procedure represents a change from the reflec- 
tion hkl at g/ to the Friedel-pair reflection, hkl, at 
180°- ~ and is simulated by Figs. 5(a)(vii) and (ix), 
or (viii) and (x). Fig. 7 shows the I(Ato,/120) distribu- 
tion obtained for the 112 reflection at ~=260  °, i.e. 
the operation described above was carded out with 
the specimen crystal initially in the orientation which 
yielded Fig. 3(a)(ii). Fig. 7 is clearly in accord with 
Fig. 5(b)(ix), as expected, since Fig. 3(a)(ii) has 
already been shown to be compatible with Fig. 5(b) 
(vii). Similarly, when the operation described above 
is applied to the specimen crystal initially in the 
orientation that yielded Fig. 3(a)(i), the resulting 
I ( Ato, A 2 0 ) distribution is in accord with Fig. 5 (b) (x). 

3. Mosaic distribution about the scattering vector 

In the various examples considered so far, for the 
112 and 112 reflections, Figs. l(b), 3, 6 and 7, we 
have looked at essentially the same 'set' of local 
mosaic distributions along the crystal, but it has been 
reoriented, relative to the incident X-ray beam, within 
the diffraction plane. If we investigate a different 
region of the specimen crystal, by changing the reflec- 
tion under consideration or by rotating about the 
scattering vector (by an amount other than 180°), we 
may well observe a different 'set' of local mosaic 
distributions along the crystal [e.g. see Figs. 1 (a) and 
2], owing to the inhomogeneous nature of the general 
mosaic distribution for the specimen crystal. 

As an example of the way in which the mosaic 
distribution seen in the diffraction plane can change 
with specimen-crystal orientation, I (/1to, A 20) distri- 
butions were recorded at several positions about the 
scattering vectors of the 112 and 112 reflections. 
Rather than try to present all the information con- 
tained in these data, we have chosen to display one 
particular aspect of the mosaic distributions, namely 
the asymmetry and angular width. Figs. 8(a) and (b) 
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show polar plots of the distances, along AoJC°~, * from 
the Mo Ka~ peak position to the 10% contour, as a 
function of @, for the 112 and 112 reflections respec- 
tively. The distance from the peak position in the 
+Ato (°) direction is plotted toward the value of @ 
concerned in each case, and the distance in the -Ato (°) 
direction in the opposite direction. The curves in Figs. 
8(a) and (b), representing only a 180 ° rotation in @, 
are actually plotted by averaging the distances from 
the peak position, in the +A~o direction for @ and in 
the -A~o direction for 180°+¢. These pairs of 
distances were always approximately equal [see Fig. 
5(b)], with existing differences being largely attribu- 
table [with reference to the actual I(AoJ, A20) distri- 
butions] to the intrinsically greater extent, along A~o, 
o f  I(Aco, A20)  d i s t r i b u t i o n s  l ike  F igs .  5 ( b ) ( v i i )  a n d  
(ix), as opposed to those like Figs. 5(b)(viii) and (x). 

* In cases where the I(A~o, A20) distribution 'leaned' away from 
the AoJ axis, due to non-parallel local mosaic spread centres, these 
distances were measured to the extremes of the 10% contour, as 
projected onto the Ao~ axis. 
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Fig. 6. The I(Ato, A20) distribution ( s = 0 )  obtained for the 112 
reflection in the - 2 0  region at a value of @ such that the crystal 
orientation is related to that for Fig. 3(a)(i) in the same way as 
the two crystal orientations used to get Fig. 2. The contour levels 
are the same as in Fig. 2. 
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Fig. 7. The I(A~,A20) distribution (s=0)  obtained for the 112 
reflection at ~, = 260 °. The contour levels are 4000, 3000, 2000, 
1500, 1000, 500, 200 and |00 countss -I. 

It is quite clear that there is a mirror relationship, 
in the horizontal line between 0 and 180 ° @, between 
Figs. 8(a) and (b). The reason for this is quite 
apparent from a consideration of the relationship 
between Figs. 5(b)(vii) and (ix), or (viii) and (x), as 
discussed at the end of § 2. The asymmetry (or, more 
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Fig. 8. Polar plots of the distances, along Aco C°~, from the Mo K~I 
peak position to the 10% contour as a function of @, for (a) the 
112 reflection and (b) the 112 reflection. Further details are given 
in the text. (c) Polar plot analogous to Fig. 8(a), but in relation 
to A20 rather than Aco. 
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specifically, the positions of the extremes of the 10% 
contour, as projected onto the Ato axis, relative to 
the peak position) for the 112 reflection at a position 
qt will be of essentially the same magnitude, but of 
the opposite sense, as that for the 112 reflection at 
180°- 0, and therefore the same (in both magnitude 
and sense) as that indicated for the 112 reflection at 
-q~ (hence the mirror). 

In Fig. 8(a) [(b)], the narrowest part is (roughly) 
along the line from 135 to 315 ° [45 to 225 ° ] and the 
widest part is along the line 90 ° away, i.e. from 45 to 
225 ° [135 to 315°]. In each case, the narrowest part 
of the figure (through the pole) is also the most 
symmetrical, and the widest part is also the most 
asymmetrical. These observations are entirely con- 
sistent, for example, with the findings of Duisenberg 
(1983), who treated 'anisotropic mosaicity and split- 
ting' of crystals by means of a 'rotational cluster 
model'. In the present case, and in the parlance of 
D_u_isenberg (1983), the neat profiles for the 112 and 
112 reflections would be at azimuthal angles (qJo) of 
approximately 135 (or 315) and 45 ° (or 225 ° ) respec- 
tively. In discussing Figs. 8(a) and (b) in relation to 
Duisenberg's (1983) findings, it should be stated that, 
although his work is in relation to conventional one- 
dimensional intensity profiles and Figs. 8(a) and (b) 
depict results from what are essentially slice scans, a 
comparison is still valid, at least in this case, because 
the 'slice scans' are representative of the conventional 
intensity profiles that would be derived. That is, the 
narrowest and most symmetrical intensity profiles do 
occur at approximately the azimuthal angles men- 
tioned above, as do the widest and most asymmetrical 
profiles. It should be noted however that the widest 
intensity profiles in the present case are narrower, by 
approximately an order of magnitude, than those of 
Duisenberg (1983) and are only representative of 
what he calls 'anisotropic mosaicity' and not 'split- 
ting' of the specimen crystal. 

Fig. 8(c) shows a polar plot analogous to Fig. 8(a), 
but in relation to A20 rather than Ato. In Figs. 8(a) 
and (b) the major contribution was from/z, whereas 
this component, being at right angles to the A20 axis 
for the s = 0 scan mode, makes no contribution to 
Fig. 8(c) (see Mathieson, 1984c). The variation 
observed in Figs. 8(a) and (b) is due to the variation 
in/z with ~. As in Figs. 8(a) and (b), the contributions 
from tr, A and c remain constant in Fig. 8(c).* Hence, 
Fig. 8(c) is, to a good approximation, a circle centred 
on the pole. The contribution of the tr component to 
the diameter of Fig. 8(c) is, for a source-to-crystal 
distance S of ---214 mm, a take-off angle of 4 ° and a 
0.4 mm wide X-ray focus (as viewed down the length 

* For c this is only an approximation. In the cases under con- 
sideration here, the 112 and 1i2 reflections, the size of  the crystal 
as presented to the incident X-ray beam in the diffraction plane 
changes little for rotations in ~O. 

of the tube), (0.4 tan 4°/214)(180°/~r) -~ 0.007 °. The 
contribution of the ;t component is given by 
2(AA/A) tan 0 (see Mathieson, 1984c). If we assume 
that the shape of the Mo Kal peak can be described 
by I=Io/[l+4(A-Ao)2FWHH-2], where Io and Ao 
are the intensity and wavelength respectively at the 
maximum (Hoyt, 1932), the width at the 10% level 
is 3FWHH -~ 0.9 m/~ (Compton & Allison, 1935). The 
A contribution is thus 2(0.0009/0.7093)tan6.1 ° 
x(180°/~r)=0"016 °. The c contribution can be 
shown to be ac(l+Scos20/D), where ac is the 
angle subtended by the crystal at the source, in the 
diffraction plane [cf Mathieson (1984a, c) for the 
S = D case]. This amounts to (0"06/214)(180°/7r)(1 + 
214 cos12"2°/252) = 0"029 °. Finally, the contribu- 
tion due to the width of the detector aperture 
(-~0.1mm) is (0.1/252)(180°/~r)=0.023 °, giving a 
total figure of 0.075 ° for the predicted diameter of 
Fig. 8(c). This is in reasonable agreement with Fig. 
8(c), where the diameter ranges from ---0.055 to 
-..0.058 °. 

4. Discussion 

The analysis of the I (Ato, A 2 0 ) distributions collected 
with the improved technique (Mathieson & 
Stevenson, 1984, 1985) has revealed that one can learn 
a great deal about the mosaic spread along the projec- 
ted length of a quite small crystal in respect of a 
particular orientation (in the diffraction plane). The 
comparison of such distributions, collected for closely 
related crystal orientations, has confirmed the inter- 
pretation of the results. 

The importance of the improved Aw, A20 tech- 
nique, whereby the or component is reduced to a 
minor angular role, is more fully appreciated when 
it is realized that those characteristics of Figs. 3, 6 
and 7 associated with the asymmetry and 
inhomogeneity of the local mosaic spreads and the 
non-parallelism of the distribution centres along the 
crystal cannot be detected in' the corresponding 
I(aoj, A20) distributions collected with a 'short' 
source (Mathieson & Stevenson, 1984), let alone the 
conventional one-dimensional intensity profiles, 
I(Ao~). 

The fact that the Aw, A20 technique employed here 
is capable of identifying diffraction from one side of 
the specimen crystal to the other (in the diffraction 
plane), even for very small crystals, indicates that the 
shape and size of the specimen are of importance, in 
particular, in regard to the extent of the intensity 
distribution in A20. 

The establishment of a technique capable of show- 
ing the intricacies of the/z distribution for particular 
Bragg reflections (including equivalents) could lead, 
because of the intimate relationship between/z and 
the reflectivity r (or 'level of interaction'), to a more 
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accurate prescription for structure-factor estimation 
(Mathieson, 1979, 1984b). 

The small CuInSe2 single crystal used in this study 
has proved to be a convenient, but in no way special, 
specimen with which to demonstrate some of the 
possibilities of the Aoj, A20 technique. The experi- 
mental observations have general significance for the 
modelling of crystals, since such models are mostly 
based on homogeneous mosaic spread (by contrast 
see Boehm, Prager & Barnea, 1974; Le Page & Gabe, 
1978). The characteristics of the local mosaic distribu- 
tions have proved to be quite diverse, even for the 
limited number of aspects in which the crystal has 
been viewed. Clearly, further work, with a variety of 
crystal specimens, is required to realize and appreci- 
ate the full potential of this technique. 

One of us (AWS) acknowledges the financial 
support of a CSIRO Postdoctoral Award. 

Note  added  in proof: A more accurate estimate of the 
diameter of Fig. 8(c) (see the end of § 3) can be 

obtained by carrying out a two-dimensional convol- 
ution of the functional forms associated with (/z), or, 
h, c and the detector aperture, i.e. a simulation of an 
l(Ato, A20) distribution. Such a calculation yields a 
value of ---0.051 ° . 
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Abstract 
A method of absolute scaling of diffraction data is 
proposed, based on the calculation of the sum of the 
intensity diffracted at low resolution (Bragg d spacing 
> 15/~). This sum is proportional to the mean-square 
deviation of the scattering-length density in the unit 
cell, and this property is used to determine the scale 
factor. The method is applied to the case of neutron 
diffraction using contrast variation experiments with 
biological molecules, and it is used to check the 
validity of some assumptions concerning the system 
under study, such as the global rate of H / D  exchange 
or the uniformity of scattering-length density in the 
molecules. The use of this method requires an 
asymptotic correction of the sum of intensity. This 
correction is based on Porod's law, whose application 
to diffraction experiments is discussed, in particular 
for contrast variation experiments. An analysis of the 
spherical average of the diffracted intensity as a func- 
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tion of the scattering vector, compared to isotropic 
solution scattering, allows the conditions of applica- 
bility of Wilson statistics to be specified at low and 
medium resolution, i.e. the random statistical model 
underlying the Wilson statistics in this scattering 
range to be defined. 

I. Introduction 

In a structural study of complex molecules, such as 
biological macromolecules, by low-resolution 
neutron crystallography using H 2 0 / D 2 0  contrast 
variation, it is essential to know all the data concern- 
ing the contrast of all components of the system 
accurately. In practice, these values are usually calcu- 
lated from the available information on the chemical 
composition of the components, making assumptions 
on the degree of H / D  exchange on different sites 
within the components. Looking for a simple method 
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